2025-10-04 04:30:48
三維光子集成多芯MT-FA光耦合方案是應對下一代數據中心與AI算力網絡帶寬瓶頸的重要技術突破。隨著800G/1.6T光模塊的規模化部署,傳統二維平面光互聯面臨空間利用率低、耦合損耗大、密度擴展受限等挑戰。三維集成技術通過垂直堆疊光子層與電子層,結合多芯光纖陣列(MT-FA)的并行傳輸特性,實現了光信號在三維空間的高效耦合。具體而言,MT-FA組件采用42.5°端面全反射設計,配合低損耗MT插芯與高精度V槽基板,將多芯光纖的間距壓縮至127μm甚至更小,使得單個組件可支持12芯、24芯乃至更高密度的并行光傳輸。在三維架構中,這些多芯MT-FA通過硅通孔(TSV)或銅柱凸點技術,與CMOS電子芯片進行垂直互連,形成光子-電子混合集成系統。Lightmatter的L200X芯片,采用3D集成技術放置I/O于芯片任意位置。上海三維光子芯片用多芯MT-FA光耦合器
三維光子互連方案的重要優勢在于通過立體光波導網絡實現光信號的三維空間傳輸,突破傳統二維平面的物理限制。多芯MT-FA在此架構中作為關鍵接口,通過垂直耦合器將不同層的光子器件(如調制器、濾波器、光電探測器)連接,形成三維光互連網絡。該網絡可根據數據傳輸需求動態調整光路徑,減少信號反射與散射損耗,同時通過波分復用、時分復用及偏振復用技術,進一步提升傳輸帶寬與**性。例如,在AI集群的光互連場景中,MT-FA可支持80通道并行傳輸,單通道速率達10Gbps,總帶寬密度達5.3Tb/s/mm?,單位面積數據傳輸能力較傳統方案提升一個數量級。此外,三維光子互連通過光子器件的垂直堆疊設計,明顯縮短光信號傳輸距離,降低傳輸延遲(接近光速),并減少電子互連產生的熱量,使系統功耗降低30%以上。這種高密度、低延遲、低功耗的特性,使基于多芯MT-FA的三維光子互連方案成為AI計算、高性能計算及6G通信等領域突破內存墻速度墻的關鍵技術,為未來全光計算架構的規模化應用奠定了物理基礎。上海三維光子芯片用多芯MT-FA光耦合器三維光子互連芯片的精密對準技術,確保微米級堆疊層的光信號完整性。
三維光子互連系統的架構創新進一步放大了多芯MT-FA的技術效能。通過將光子器件層(含激光器、調制器、探測器)與電子芯片層進行3D異質集成,系統可構建垂直耦合的光波導網絡,實現光信號在三維空間內的精確路由。這種結構使光路徑長度縮短60%以上,傳輸延遲降至皮秒級,同時通過波分復用(WDM)與偏振復用技術的協同,單根多芯光纖的傳輸容量可擴展至1.6Tbps。在制造工藝層面,原子層沉積(ALD)技術被用于制備共形薄層介質膜,確保深寬比20:1的微型TSV(硅通孔)實現無缺陷銅填充,從而將垂直互連密度提升至每平方毫米10^4個通道。實際應用中,該系統已驗證在800G光模塊中支持20公里單模光纖傳輸,誤碼率低于10^-12,且在-40℃至85℃寬溫范圍內保持性能穩定。更值得關注的是,其模塊化設計支持光路動態重構,通過軟件定義光網絡(SDN)技術可實時調整波長分配與通道配置,為AI訓練集群、超級計算機等高并發場景提供靈活的帶寬資源調度能力。這種技術演進方向正推動光通信從連接通道向智能傳輸平臺轉型,為6G通信、量子計算等未來技術奠定物理層基礎。
從工藝實現層面看,多芯MT-FA的制造涉及超精密加工、光學鍍膜、材料科學等多學科交叉技術。其重要工藝包括:采用五軸聯動金剛石車床對光纖陣列端面進行42.5°非球面研磨,表面粗糙度需控制在Ra